2,996 research outputs found

    Correlated versus Ferromagnetic State in Repulsively Interacting Two-Component Fermi Gases

    Full text link
    Whether a spin-1/2 Fermi gas will become ferromagnetic as the strength of repulsive interaction increases is a long-standing controversial issue. Recently this problem is studied experimentally by Jo et al, Science, 325, 1521 (2009) in which the authors claim a ferromagnetic transition is observed. This work is to point out the results of this experiment can not distinguish whether the system is in a ferromagnetic state or in a non-magnetic but strongly short-range correlated state. A conclusive experimental demonstration of ferromagnetism relies on the observation of ferromagnetic domains.Comment: 4 pages, 2 figures, published versio

    Surveyor launch opportunities for mid-1965 through 1968

    Get PDF
    Lunar launch data - ascent characteristics of Atlas-Centaur AC-15 configuration and mission ground rules applied to models for Surveyor flight

    Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study

    Full text link
    In order to resolve the long-standing issue of how the itinerant ferromagnetism is affected by the lattice structure and Hund's coupling, we have compared various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that {\it both} the lattice structure and the d-orbital degeneracy are essential for the ferromagnetism in the parameter region representing a transition metal. Specifically, (a) Hund's coupling, despite the common belief, is important, which is here identified to come from particle-hole scatterings, and (b) the ferromagnetism is a correlation effect (outside the Stoner picture) as indicated from the band-filling dependence.Comment: 4 pages, 5 figure

    Magnetism of Cold Fermionic Atoms on p-Band of an Optical Lattice

    Full text link
    We carry out \textit{ab initio} study of ground state phase diagram of spin-1/2 cold fermionic atoms within two-fold degenerate pp-band of an anisotropic optical lattice. Using the Gutzwiller variational approach, we show that a robust ferromagnetic phase exists for a vast range of band fillings and interacting strengths. The ground state crosses over from spin density wave state to spin-1 Neel state at half filling. Additional harmonic trap will induce spatial separation of varies phases. We also discuss several relevant observable consequences and detection methods. Experimental test of the results reported here may shed some light on the long-standing issue of itinerant ferromagnetism.Comment: 5 pages, 4 figure

    Double Jeopardy and Dual Sovereignty: A Critical Analysis

    Full text link

    Pairing, Ferromagnetism, and Condensation of a normal spin-1 Bose gas

    Full text link
    We theoretically study the stability of a normal, spin disordered, homogenous spin-1 Bose gas against ferromagnetism, pairing, and condensation through a Random Phase Approximation which includes exchange (RPA-X). Repulsive spin-independent interactions stabilize the normal state against both ferromagnetism and pairing, and for typical interaction strengths leads to a direct transition from an unordered normal state to a fully ordered single particle condensate. Atoms with much larger spin-dependent interaction may experience a transition to a ferromagnetic normal state or a paired superfluid, but, within the RPA-X, there is no instability towards a normal state with spontaneous nematic order. We analyze the role of the quadratic Zeeman effect and finite system size.Comment: 4 pages, 3 figures, 1 table. Supplementary materials attache

    Validity of the scattering length approximation in strongly interacting Fermi systems

    Full text link
    We investigate the energy spectrum of systems of two, three and four spin-1/2 fermions with short range attractive interactions both exactly, and within the scattering length approximation. The formation of molecular bound states and the ferromagnetic transition of the excited scattering state are examined systematically as a function of the 2-body scattering length. Identification of the upper branch (scattering states) is discussed and a general approach valid for systems with many particles is given. We show that an adiabatic ferromagnetic transition occurs, but at a critical transition point kF a much higher than predicted from previous calculations, almost all of which use the scattering length approximation. In the 4-particle system the discrepancy is a factor of 2. The exact critical interaction strength calculated in the 4-particle system is consistent with that reported by experiment. To make comparisons with the adiabatic transition, we study the quench dynamics of the pairing instability using the eigenstate wavefunctions.Comment: 7 pages, 7 figure

    The Glass is Half Full: The Positive Effects of Organizational Identification for Employees Higher in Negative Affectivity

    Get PDF
    Organizational identification has traditionally been associated with positive organizational outcomes, whereas negative affectivity (NA) has most often been associated with negative individual outcomes. We hypothesize that organizational identification will positively influence self-reported performance for individuals high in NA. Conversely, individuals low in NA will not experience feelings of enhanced performance as organizational identification increases. The findings from 2 samples provided support for the research hypothesis; specifically, the personality factor of NA moderated the organizational-identification/self-reported performance relationship. We discuss our findings in light of important implications for the positive psychology movement and practicing managers

    Hysteretic properties of a magnetic particle with strong surface anisotropy

    Full text link
    We study the influence of surface anisotropy on the zero-temperature hysteretic properties of a small single-domain magnetic particle, and give an estimation of the anisotropy constant for which deviations from the Stoner-Wohlfarth model are observed due to non-uniform reversal of the particle's magnetisation. For this purpose, we consider a spherical particle with simple cubic crystalline structure, a uniaxial anisotropy for core spins and radial anisotropy on the surface. The hysteresis loop is obtained by solving the local (coupled) Landau-Lifschitz equations for classical spin vectors. We find that when the surface anisotropy constant is at least of the order of the exchange coupling, large deviations are observed with respect to the Stoner-Wohlfarth model in the hysteresis loop and thereby the limit-of-metastability curve, since in this case the magnetisation reverses its direction in a non-uniform manner via a progressive switching of spin clusters. In this case the critical field, as a function of the particle's size, behaves as observed in experiments.Comment: 12 pages, 15 eps figure

    Magnetism of 3d transition metal atoms on W(001): submonolayer films

    Full text link
    We have investigated random submonolayer films of 3d transition metals on W(001). The tight-binding linear muffin-tin orbital method combined with the coherent potential approximation was employed to calculate the electronic structure of the films. We have estimated local magnetic moments and the stability of different magnetic structures, namely the ferromagnetic order, the disordered local moments and the non-magnetic state, by comparing the total energies of the corresponding systems. It has been found that the magnetic moments of V and Cr decrease and eventually disappear with decreasing coverage. On the other hand, Fe retains approximately the same magnetic moment throughout the whole concentration range from a single impurity to the monolayer coverage. Mn is an intermediate case between Cr and Fe since it is non-magnetic at very low coverages and ferromagnetic otherwise.Comment: 5 pages, 3 figures in 6 files; presented at ICN&T 2006, Basel, Switzerlan
    corecore